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Decompression illness is caused by intravascular or extravascular bubbles that are formed as a result of reduction in 
environmental pressure (decompression). The term covers both arterial gas embolism, in which alveolar gas or 
venous gas emboli (via cardiac shunts or via pulmonary vessels) are introduced into the arterial circulation, and 
decompression sickness, which is caused by in-situ bubble formation from dissolved inert gas. Both syndromes can 
occur in divers, compressed air workers, aviators, and astronauts, but arterial gas embolism also arises from iatrogenic 
causes unrelated to decompression. Risk of decompression illness is aff ected by immersion, exercise, and heat or 
cold. Manifestations range from itching and minor pain to neurological symptoms, cardiac collapse, and death. First-
aid treatment is 100% oxygen and defi nitive treatment is recompression to increased pressure, breathing 100% 
oxygen. Adjunctive treatment, including fl uid administration and prophylaxis against venous thromboembolism in 
paralysed patients, is also recommended. Treatment is, in most cases, eff ective although residual defi cits can remain 
in serious cases, even after several recompressions.

Introduction
Decompression illness is caused by bubbles in blood or 
tissue during or after a reduction in environmental 
pressure (decompression). It includes two patho-
physiological syndromes: arterial gas embolism and the 
more common decompression sickness. Arterial gas 
embolism occurs mainly during hyperbaric exposure 
(eg, diving) and rarely during hypobaric exposure 
(eg, altitude).

Arterial gas embolism occurs when expanding gas 
stretches and ruptures alveolar capillaries—pulmonary 
barotrauma—allowing alveolar gas to enter the arterial 
circulation (fi gure 1). This syndrome can occur after 
ascent from a depth as shallow as 1·0–1·5 m if the 
starting lung volume is close to total lung capacity.1 It can 
be caused by gas becoming trapped as a result of airways 
obstruction in disorders such as asthma2 or by the 
presence of pulmonary blebs, cysts, or bullae.3 Arterial 
gas embolism can also arise in the absence of 
decompression through iatrogenic accidents involving 
vascular catheters and mechanical ventilation.

Decompression sickness starts with the formation and 
increase in size of extravascular and intravascular bubbles 
when the sum of the dissolved gas tensions (oxygen, 
carbon dioxide, nitrogen, helium) and water vapour 
exceeds the local absolute pressure. In diving and during 
compressed-air tunnel and caisson work, this state of 
supersaturation is made possible by the increase in tissue 
inert gas partial pressure that occurs when the gas 
(usually nitrogen, but occasionally helium) is respired 
at high pressure. Supersaturation arises during 
decompression if the rate of ambient pressure reduction 
exceeds the rate of inert gas washout from tissue. Ascent 
to altitude in aviation and extravehicular activity during 
spacefl ight involves exposure to decreased barometric 
pressure. In these settings, supersaturation arises as a 
result of pre-existing dissolved nitrogen at sea level 
(partial pressure of nitrogen of about 570 mm Hg), which 
can also cause bubble formation.

Venous gas emboli formed from dissolved gas are easily 
detected by ultrasonography. In divers, 3·6 m is the 

minimum dive depth after which venous gas emboli can 
be seen4 whereas the decompression sickness threshold, 
after saturation dives lasting 1–3 days, is about 6 m.5 
During direct decompression from sea level to altitude, 
the threshold for formation of venous gas emboli is 
around 3600 m whereas the decompression sickness 
threshold is about 5500 m.6,7

Bubbles can have mechanical, embolic, and biochemical 
eff ects with manifestations ranging from trivial to fatal. 
Clinical manifestations can be caused by direct eff ects 
from extravascular (autochthonous) bubbles such as 
mechanical distortion of tissues causing pain, or vascular 
obstruction causing stroke-like signs and symptoms. 
Secondary eff ects can cause delayed symptom onset up 
to 24 h after surfacing. Endothelial damage by 
intravascular bubbles can cause capillary leak, 
extravasation of plasma, and haemoconcentration.8 
Impaired endothelial function, as measured by decreased 
eff ects of vasoactive compounds, has been reported in 
animals9 and might occur in man. Hypotension can 
occur in severe cases.10 Other eff ects include platelet 
activation and deposition,11 leucocyte-endothelial 
adhesion,12 and possibly consequences of vascular 
occlusion believed to occur in thromboembolic stroke 
such as ischaemia-reperfusion injury, and apoptosis.13

Arterial gas embolism most often aff ects the brain but 
can occasionally aff ect the heart and other organs. 

Search strategy and selection criteria

We searched PubMed in English with the search terms 
“decompression illness”, “decompression sickness”, and 
“arterial gas embolism” for reports mostly published in the 
past 20 years until January, 2010. Bibliographies of selected 
articles were reviewed for other relevant references. We also 
relied on our familiarity with key literature. Pertinent review 
articles, book chapters, proceedings, and papers older than 
20 years were used when judged important, but some 
conclusions are based on anecdotal reports because 
randomised trials are rare.
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Decompression sickness produces symptoms related to 
the eff ects of bubbles on periarticular tissues, spinal cord, 
brain, lungs, skin, and the audiovestibular system. 
Concurrent arterial bubbles from arterial gas embolism 
exacerbate decompression sickness,14 possibly by 
reducing tissue perfusion and impairing inert gas 
washout or by increasing bubble size. Decompression 
sickness symptoms after recreational diving (fi gure 2) 
typically consist of pain or mild neurological 

manifestations such as numbness or paraesthesias. Most 
patients with altitude-related decompression sickness 
have similar manifestations,15–18 although cerebral 
symptoms have been reported in U-2 pilots.19,20

Small quantities of venous gas emboli are common in 
diving21 although they are usually asymptomatic because 
most of the time they are eff ectively fi ltered by the 
pulmonary circulation. However, large numbers of 
venous gas emboli can cause cough, dyspnoea, and 
pulmonary oedema (cardiorespiratory decompression 
sickness, or chokes)22 and can overcome the pulmonary 
capillary fi lter.23 Moreover, a patent foramen ovale or 
other right-to-left cardiac shunt is present in about 27% 
of the normal population,24 and theoretically some venous 
gas emboli could enter the arterial circulation and reach 
the CNS, where they could grow from the inward 
diff usion of supersaturated inert gas.25 Patent foramen 
ovale has been statistically associated with cerebral, 
spinal, and vestibulocochlear manifestations,26–36 and 
with cutaneous manifestations.30

Epidemiology 
Arterial gas embolism is usually precipitated by rapid 
ascent, breath-holding, or the presence of lung disease, 
and thus is rare with an apparently decreasing incidence. 
The proportion of cases of decompression illness 
attributable to arterial gas embolism in recreational 
divers declined from 18% in 1987 to 8% in 1997.37 Of 
441 confi rmed or possible incidents of decompression 
illness in recreational divers reported to the Divers Alert 
Network, only 3·9% were classifi ed as possible arterial 
gas embolism.38

If appropriate decompression procedures are followed, 
decompression sickness is also uncommon. Rate of 
occurrence (per dive) in operational open water dives 
from minutes to several hours in duration varies 
according to the diving population: typically 0·015% for 
scientifi c divers, 0·01–0·019% for recreational divers, 
0·030% for US Navy divers, and 0·095% for commercial 
divers.39,40 The number of active worldwide recreational 
divers is not known but is likely to be in the millions. 
The Divers Alert Network took a sample of 135 000 dives 
by 9000 recreational divers in which the rate of occurrence 
of decompression sickness was 0·03%. This rate was 
much higher during dives to wrecks in cold water than 
during dives in warm water from diving cruise vessels.38 
These numbers are all based on many dives made well 
within the maximum exposure limits of accepted 
procedures (decompression tables or computers) and 
therefore are underestimates of the true rates at the 
maximum limits. For example, the rate of occurrence of 
decompression sickness for US Navy dives from 
1971 to 1978 at the maximum limits was 1·3%.41 Moreover, 
for long exposures under stressful thermal and exercise 
conditions, US Navy dive trials designed to develop new 
decompression procedures had an occurrence rate of 
4·4 cases of decompression sickness per 100 dives.42

Figure 1: Pulmonary barotrauma in a diver during breath-hold ascent

Cerebral air embolism

Subcutaneous emphysema

Pneumomediastinum

Air enters pulmonary capillary

Pneumothorax

Rupture of alveoli

Normal alveoli

Expansion of alveoli



Seminar

www.thelancet.com   Vol 377   January 8, 2011 155

Technical diving, a form of recreational diving with 
deep, long exposures, could be associated with a higher 
incidence of decompression sickness and more serious 
manifestations than are the other types of diving, 
although insuffi  cient data are available for accurate 
estimates. Commercial diving for construction and 
off shore oil production is another important diving 
activity. Decompression sickness is reportedly rare in 
modern commercial saturation dives (working dives 
lasting several days, with one, extended decompression) 
although documentation for commercial diving and for 
compressed air and caisson work is insuffi  cient. For 
hyperbaric medicine attendants, the occurrence rate of 
decompression sickness is reported as 0·02% per 
exposure.43,44 In altitude training or fl ight operations, the 
rate of occurrence of decompression sickness is typically 
less than 0·1% per exposure, with most individuals 
reporting only mild symptoms.16,17 However, anonymous 
surveys of high-altitude Air Force pilots indicated higher 
frequencies,18 with some cases being quite serious.19,20

Risks of decompression sickness that are thought to be 
acceptable are a matter of subjective judgment. Acceptable 
risks specifi ed for commercial diving include 0·1% for 
mild cases and 0·025% for serious cases,39 whereas for 
US Navy diving, acceptable risk is 2% for mild cases 
and 0·1% for serious cases.45

Other than depth and time, risk of decompression 
sickness is aff ected by other factors that aff ect inert gas 
exchange and bubble formation, such as immersion 
(vs dry hyperbaric chamber exposure), exercise, and 
temperature. Immersion decreases venous pooling and 
increases venous return and cardiac output.46,47 Warm 
environments improve peripheral perfusion by 
promoting vasodilation, whereas cool temperatures 
decrease perfusion through vasoconstriction. Exercise 
increases both peripheral perfusion and temperature. 
The eff ect of environmental conditions on risk of 
decompression sickness is dependent on the phase of 
the pressure exposure.39 While under pressure, exercise, 
immersion, or a hot environment increase inert gas 
uptake and risk of decompression sickness. During 
decompression these factors increase inert gas 
elimination and therefore decrease the risk of 
decompression sickness.48 Conversely, uptake is reduced 
during rest or in a cold environment, hence a diver 
resting in a cold environment on the bottom has 
decreased risk of decompression sickness. Rest or low 
temperatures during decompression increase the risk. 
If exercise occurs after decompression when super-
saturation is present, bubble formation increases and 
risk of decompression sickness rises.39,49

Exercise at specifi c times before a dive can decrease the 
risk of serious decompression sickness in animals and 
incidence of venous gas emboli in both animals and 
man.50–54 The mechanisms of these eff ects are unknown 
but might involve modulation of nitric oxide production 
and eff ects on endothelium. Whether appropriately 

timed exercise can decrease the probability of 
decompression sickness in man is unknown. Venous gas 
emboli and risk of decompression sickness increase 
slightly with age and body-mass index,21,39 but the eff ect of 
sex is uncertain.7,55

Diagnosis
The protean nature of decompression illness makes 
diagnosis diffi  cult. Diagnosis is made on a clinical basis, 
thus accurate history and physical examination of 
individuals with symptoms after diving or altitude 
exposure are crucial.

Arterial gas embolism should be suspected if a diver 
has a new onset of altered consciousness, confusion, 
focal cortical signs, or seizure during ascent or within a 
few minutes after surfacing from a compressed gas dive. 
If the diver spends much time at depth and might have 
absorbed substantial inert gas before surfacing, arterial 
gas embolism and serious decompression sickness can 
coexist, and in such cases, spinal cord manifestations can 
predominate.14 Other organ systems, such as the heart, 
can also be aff ected, but the clinical diagnosis of gas 
embolism is not reliable without CNS manifestations. 
Arterial gas embolism is rare in altitude exposure; if 
cerebral symptoms occur after altitude exposure, the 
cause is usually decompression sickness.

The diagnosis of decompression sickness is based 
entirely on clinical manifestations. Any new symptom 
arising shortly after decompression should be 
considered as possible decompression sickness, 

Figure 2: Classifi cation of initial and of all eventual manifestations of decompression illness in 
2346 recreational diving accidents reported to the Divers Alert Network from 1998 to 2004 
*For all instances of pain, 58% consisted of joint pain, 35% muscle pain, and 7% girdle pain. Girdle pain often 
portends spinal cord involvement. †Constitutional symptoms included headache, lightheadedness, inappropriate 
fatigue, malaise, nausea or vomiting, and anorexia. ‡Muscular discomfort included stiff ness, pressure, cramps, and 
spasm but excluded pain. §Pulmonary manifestations included dyspnoea and cough.
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especially if the depth-time exposure has approached or 
exceeded accepted procedures. The diagnosis is more 
certain after a provocative depth-time exposure (one 
that is close to or exceeds limits prescribed by dive 
tables or computers) than after a mild exposure. The 
US Navy Diving Manual56 is widely used for comparison 
in assessment of exposure severity.

Although arterial gas embolism can arise after ascent 
from very shallow depths, decompression sickness 
almost never occurs after a single dive to depths of less 
than 6 m, even for an extended time,5 and is uncommon 
at depths of less than 10 m. For altitude exposure, 
decompression sickness is rare unless preceded by 
diving, or if ascent to 5500 m or higher was rapid (eg, in 
a military aircraft or hypobaric chamber).

Decompression sickness has a wide range of 
manifestations.56–59 The frequency of initial manifest-
ations and all eventual manifestations for recreational 
divers are listed in fi gure 2. Constitutional and non-
specifi c symptoms such as malaise, fatigue, headache, 
and transient periarticular discomfort in isolation are 
usually thought to be of minor clinical importance but 
do seem to be related to decompression stress.60 In 
the data presented in fi gure 2, pain, constitutional 
symptoms, subjective numbness, paraesthesias, or rash 

initially occurred in 85% of cases, and at least one mild 
manifestation was present in all cases. 

The type of exposure can aff ect the manifestation 
pattern. For example, in recreational divers, joint pain 
tends to be more common in the arms, whereas in 
saturation divers pain in the knees is more common. 
Audiovestibular manifestations are more frequent after 
deep heliox diving than after air diving.25,58,61 Neurological 
decompression sickness is more common in civilian 
treatment centres than after military dive trials,57,58,62 but 
whether this diff erence is due to variations in diving 
practice or symptom reporting is not clear. Predilection 
for injury pattern (eg, spinal cord vs inner ear) might 
vary with the characteristics of the divers.25

Although some instances of decompression sickness 
(especially in saturation diving) occur during 
decompression, most cases present soon after surfacing. 
For example, in a series of military divers, 42% of 
symptoms occurred within 1 h after diving, 60% within 
3 h, 83% within 8 h, and 98% within 24 h.56 CNS cases 
of decompression sickness present more quickly: in 
1070 patients, 56% had symptoms within 10 min and 
90% within 4 h.63 Decompression sickness can be 
considered even several days after diving, especially if 
the patient has subsequently travelled by air or ascended 
to altitude.64–66 Symptoms that develop either during 
descent or at depth are never due to decompression 
sickness unless there was previous diving within a 
few hours.

Neurological examination is essential for all divers 
with suspected decompression illness, unless re-
compression would be delayed during rapid evolution 
of obvious neurological abnormalities. Cognitive 
manifestations are often not noticed by patients and can 
be detected only by direct examination. Generally, the 
fi ndings in neurological assessment diff er from those 
noted during most common stroke syndromes. Non-
dermatomal hypoaesthesia and truncal ataxia are 
common in neurological decompression sickness and 
can be missed by cursory examination. Pertinent 
information includes level of consciousness and mental 
status, cranial nerve function, and motor strength. 
Coordination can be aff ected disproportionately, and 
abnormalities can be detected by assessment of fi nger-
nose movement, and, with eyes open and closed, ability 
to stand and walk and do heel-toe walking backwards 
and forwards. Many of these simple tests can be done 
on the scene by untrained companions. Physical 
examination is often normal, especially when symptoms 
are limited to pain or paraesthesias. Lymphoedema 
(particularly in the trunk) and rash (fi gure 3) can result 
from decompression sickness.

Severe decompression sickness can be accompanied 
by haemoconcentration due to endothelial leak.8,10 Thus, 
measurement of blood haemoglobin or packed-cell 
volume could help guide fl uid resuscitation. 
Concentration of serum creatine kinase helps 

Figure 3: Livedo reticularis (cutis marmorata) due to decompression sickness 
in a recreational diver
This rash occurring after a dive is uncommon but almost pathognomonic of 
decompression sickness. 
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distinguish arterial gas embolism from decompression 
sickness (enzyme concentration in severe cases can be 
high in pulmonary barotrauma with arterial gas 
embolism67), although diff erentiation between these 
disorders before recompression is unnecessary since 
recompression is indicated for both. Chest radiography 
is useful for detection of pneumothorax after a suspected 
arterial gas embolism. For detection of extrapulmonary 
air, chest CT is more sensitive but is unnecessary 
because of its high radiation exposure. 

Bubbles are rarely detectable with radiography in 
joints aff ected by pain, and are rarely noted in the brain 
with either MRI or CT.68 MRI is similarly not useful for 
detection of abnormalities of the spinal cord related to 
decompression sickness.69 Thus, although laboratory 
and radiological analyses are useful for detection of 
abnormalities in some cases, imaging studies are not 
useful for assessment of whether a patient needs 
recompression treatment and should not delay 
recompression unless there is a strong suspicion of a 
non-diving related cause (eg, cerebral haemorrhage). 
Specifi c neurophysiological tests (eg, audiometry and 
electronystagmography for inner-ear decompression 
sickness) or imaging can usually be delayed until 
after recompression. Doppler ultrasonography and 
echo cardio graphy are valuable for research into venous 
gas emboli4,21,51–54,70 but not for diagnosis of decompression 
illness. The diff erential diagnosis of decompression 
illness includes acute coincidental illness, especially 
neurological disorders. Specifi c disorders that could be 
confused with decompression illness are listed in 
the panel.

Decompression injuries have traditionally been 
classifi ed as arterial gas embolism, and type 1 and type 2 
decompression sickness. Type 1 decompression sickness 
included pain, cutaneous manifestations, and constitu-
tional symptoms, whereas type 2 manifestations includ-
ed numbness, tingling, paraesthesias, muscle weakness, 
paralysis, and mental or motor abnormalities.81 Arterial 
gas embolism and type 2 decompression sickness were 
thought to require more aggressive treatment than 
type 1 decompression sickness. Because the traditional 
classifi cation system was applied inconsistently and had 
little predictive value, it has been largely replaced by the 
inclusive term decompression illness.82 Although 
identifi cation of the pathophysio logical changes in 
individuals is useful for epidemi ology and recommen-
dations for future diving, the correct pathophysiological 
changes often cannot be identifi ed and are not usually 
important for selection of treatment.

Other classifi cation systems that have been proposed 
were for the creation of severity indices that might be 
useful to guide treatment and prediction of outcome.83–89 
These approaches showed reasonable associations 
between severity at presentation and outcome,69,85,90–94 
but need to be more consistent and simpler for their 
potential to be reached.95–97

Prevention
Arterial gas embolism is rare at altitude and is not related 
to depth-time exposure in diving. The risk of this 
syndrome can be decreased by avoidance of breath 
holding, rapid ascent, and diving with pulmonary 
infections or disease. Risk of decompression sickness is 
decreased by reduction of exposure or by elimination of 
inert gas before (eg, with high oxygen concentrations) or 
during decompression, but adherence to these procedures 
does not always prevent the syndrome. 100 years ago, 
serious manifestations and deaths were frequent in 
diving and caisson work but they decreased greatly when 
decompression stops were introduced. These stops delay 
ascent to the surface and allow inert gases to be eliminated 
in dissolved form rather than as bubbles.6,99 A 

Panel: Diff erential diagnosis of decompression illness

Inner-ear barotrauma
Inner-ear barotrauma usually occurs during descent and results in tinnitus, hearing loss, 
and persistent vertigo.71,72 Conductive hearing loss is seen in middle-ear barotrauma. Both 
inner-ear and middle-ear barotrauma are usually preceded by diffi  culty in equalising 
middle-ear pressure. Transient vertigo during compression or decompression can arise 
because of asymmetric middle-ear pressure equilibration (alternobaric vertigo).61

Middle-ear or maxillary sinus overinfl ation
This disorder is caused by gas expansion during ascent and an obstructed eustachian tube 
or sinus ostium, resulting in compression of the facial nerve and unilateral upper and 
lower facial weakness,73 or compression of branches of the trigeminal nerve causing 
hypoaesthesia of the face.74

Contaminated diving gas and oxygen toxic eff ects
Carbon monoxide poisoning due to contaminated breathing gas can cause 
encephalopathy and convulsions. Toxic eff ects of oxygen are most common in divers 
using enriched oxygen breathing mixtures and can cause convulsions at depth.

Musculoskeletal strains or trauma sustained before, during, or after diving56,58,74–76

Time of onset and history of trauma or strain are helpful. Pain due to decompression 
illness is rarely accompanied by tenderness or position-related or motion-related 
exacerbation physical examination.

Seafood toxin ingestion (ciguatera, puff er fi sh, paralytic shellfi sh poisoning)
Ingestion of toxins is often associated with gastrointestinal symptoms and can cause 
neurological manifestations within hours after ingestion.77

Immersion pulmonary oedema
This disorder usually occurs shortly after the start of a dive, while the diver is still at depth, 
and might be confused with cardiorespiratory decompression sickness, since both cause 
dyspnoea and cough.78–80 Symptoms of immersion pulmonary oedema typically begin 
during descent or at depth, whereas the onset of cardiorespiratory decompression 
sickness occurs after the dive.

Water aspiration
Water aspiration could be mistaken for cardiorespiratory decompression sickness. Both 
cardiorespiratory decompression sickness and water aspiration can cause pulmonary 
oedema, although the diver is usually aware of aspiration.

Coincidental, unrelated acute neurological disorder (eg, stroke, spinal hematoma)
Diagnosis is made with conventional techniques.
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decompression schedule specifi es the stop times typically 
at 3 m intervals during ascent according to the maximum 
dive depth and bottom time. In the 1980s, equally eff ective 
diver-worn digital computers (dive computers) were 
developed that continuously track depth-time exposure 
and specify how slowly a diver should ascend. Gas 
mixtures with high oxygen partial pressures are 
sometimes used to decrease inert gas absorption at depth 
and for faster elimination during decompression. For 
dives deeper than 45 m, gas mixtures containing helium 
are used to avoid nitrogen narcosis and to decrease the 
density of respired gas.

Detection of patent foramen ovale as a way of reducing 
the risk of serious decompression sickness has been of 
much interest. Estimates of relative risk for serious 
neurological decompression sickness associated with a 
patent foramen ovale range from 2·5 to 6·6.32 
Nevertheless, routine screening of candidate divers for 
patent foramen ovale does not seem warranted since the 
absolute risk of neurological decompression sickness is 
small (<0·02%),34 and the cost of screening is high.

Decompression sickness is rare after rapid ascent to 
altitudes lower than 5500 m with increasing risk at higher 
altitudes,7 unless the altitude exposure is preceded by 
diving within several days, in which case decompression 
sickness can occur at less than 2500 m.64,99,100 Oxygen 
breathing at sea level before altitude exposure eliminates 
dissolved tissue nitrogen and permits higher altitudes 
and longer fl ights. For extravehicular activity during 
spacefl ight, protocols have been developed that use 
oxygen breathing and exercise before the activity to 
accelerate nitrogen elimination before decompression to 
space-suit pressures of 0·3–0·4 bar.39

Treatment
Decompression illness is rare and only one prospective 
randomised trial of treatment has been reported so 
far.101 The following guidelines are therefore based 
largely on case reports, case series, animal studies, and 
clinical judgment, and have empirically changed in the 
past 60 years, especially with respect to fi rst aid and 
adjunctive treatment.

The principles of basic and advanced life support apply 
to any obtunded diver, but manifestations of 
decompression illness are typically mild and non-specifi c, 
although potentially progressive. Appropriate fi rst aid 
should be applied as soon as possible. Assistance with 
diagnosis or management can be obtained from various 
diving medical services, such as the Divers Alert Network 
or Duke Dive Medicine. 

The best and primary fi rst aid for decompression 
illness is 100% oxygen delivered for several hours even if 
manifestations resolve. Pure oxygen washes inert gas 
from the lungs and establishes the largest possible inert 
gas gradient from tissue to alveolar gas. This gradient 
results in rapid removal of inert gas from tissue to lungs 
by perfusion and from bubble to tissue by diff usion, and 

thus removal of bubbles.102 Another advantage of pure 
oxygen is amelioration of tissue hypoxia caused by 
bubble-induced ischaemia, mechanical injury, or 
biochemical damage. In an observational study, patients 
with decompression sickness who received oxygen 
during fi rst aid had symptom resolution after fewer 
recompressions than did those who did not receive 
oxygen.103 Oxygen given under slight pressure while a 
diver is returned to the water might be appropriate under 
some circumstances but is controversial because of the 
increased risk of seizures caused by toxic eff ects of 
oxygen on the CNS.104

Although the head-down position has been advocated 
to prevent distribution of arterial bubbles towards the 
head, it is not eff ective and can promote cerebral 
oedema.105 Consensus is for horizontal orientation in a 
position that helps care of the patient. Fluid administration 
is important and intravenous fl uids can be benefi cial, 
especially in serious cases, but few clinical data show 
benefi t from a specifi c type or amount of intravenous 
fl uid. Glucose-containing fl uids are best avoided because 
of the potential for adverse eff ects of hyperglycaemia in 
neurological injury, and hypotonic fl uids should not be 
used because they promote intracellular oedema.106 
Substantial fl uid resuscitation is not recommended in 
patients with isolated arterial gas embolism—eg, a 
patient who suff ers gas embolism after a short, shallow 
dive.106 Oral rehydration can be used in stable, conscious 
patients, but is unlikely to help those in greatest need. 
Nitrous oxide is inappropriate for pain relief or as a 
component of a general anaesthetic for a coincidental 
procedure because it can cause an increase in the size of 
bubbles by inward diff usion.107

Typically, recompression is done in a multiplace chamber 
in which the diver is accompanied by one or more 
attendants (fi gure 4). Decompression illness has also been 
successfully treated in one-occupant monoplace 
chambers.108 Recompression while breathing 100% oxygen 
decreases bubble volume as predicted by Boyle’s law and 
increases the inert gas partial pressure gradients between 
tissue and alveolar gas. These eff ects lead to quick 
resolution of bubbles, relieve mechanical pressure on 
surrounding tissue, and encourage redistribution of 
bubbles lodged in the microcirculation.109 Hyperbaric 
oxygen also oxygenates compromised tissues and 
ameliorates infl ammatory responses that contribute to 
tissue injury.12

Recompression is usually advised even if manifestations 
resolve with fi rst aid since untreated decompression 
sickness can recur days after the initial onset.110 Evacuation 
for recompression might be needed, especially from 
remote locations.111 For short distances, this evacuation 
could be by helicopter at low altitude, but for long 
distances, an air ambulance pressurised to 1 atm is 
usually recommended in severe cases.111,112 When pain is 
the only symptom, short commercial fl ights seem to have 
no eff ect on outcome; when mild neurological symptoms 

For the Divers Alert Network 
see www.diversalertnetwork.org

For Duke Dive Medicine see 
www.dukedivemedicine.org
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are present, short fl ights more than 24 h after diving also 
seem to be safe.113 Mild initial manifestations can develop 
into a more serious form, usually within a few hours 
after surfacing. In serious cases, delayed recompression 
is probably less eff ective, but the time beyond which 
recompression is pointless is unknown.94 Decisions about 
the advisability of recompression should ideally include a 
physician trained in diving medicine.

Recent decompression and manifestations compatible 
with decompression illness usually justify emergent 
recompression with oxygen in a pressure chamber 
(fi gure 4) unless another cause is obvious.56 Recompres-
sion should occur as soon as feasible to avoid late 
recurrence and increased severity.105,110 Treatment is 
recommended even in patients with substantially delayed 
presentation since clinical response often occurs hours 
or even days after onset.114–116 Some patients need ventilator 
support and intravenous drug infusion during 
recompression (fi gure 4).

The most common recompression schedule is US 
Navy Treatment Table 6 (fi gure 5) or an equivalent 
procedure such as promulgated by the Royal Navy, in 
which patients are compressed to 2·8 bar (equivalent to 
18 m sea water depth) while breathing 100% oxygen, a 
pressure with an acceptably low risk of cerebral oxygen-
associated toxic eff ects.56,117 The time at 2·8 bar and 
1·9 bar (equivalent to 9 m sea water) can be extended 
with additional cycles of oxygen and air if resolution is 
not complete within the prescription shown in fi gure 5. 
If treatment pressures are greater than 2·8 bar, air is 
used or nitrogen or helium is added to the breathing mix 
to reduce the risk of oxygen-associated toxic eff ects. In 
animal studies, faster bubble resolution has been shown 
with helium than with oxygen,102 but this comparison 
has been inadequately studied in clinical practice. 
Anecdotally, increased pressures can improve 
manifestations that are refractory at 2·8 bar,118 and they 
have been advocated for both arterial gas emboli (when 
severe symptoms remain unchanged or worsen within 
the fi rst 20 min at 2·8 bar)56 and decompression 
sickness.119 However, supporting evidence is weak for 
depths greater than 18 m for initial recompression 
without a demonstrated need to go deeper, and no 
benefi t has been shown in animal studies.120,121 Many 
recompression strategies ranging from pressures of 
1·9–10·0 bar exist, but there are no human outcome 
studies for comparison of effi  cacy. Short treatment 
schedules have been tested, and seem eff ective.83,108

If resolution is complete after one treatment, no 
additional treatments are needed. With residual 
manifestations after the fi rst treatment, recompression is 
typically repeated every day (often with short treatment 
tables such as the US Navy Treatment Table 5)56 until 
complete symptom resolution or no further improve-
ment.105 Most patients with residual neurological 
manifestations need only two or three treatments to reach 
a clinical plateau.101 Nonetheless, some severe cases 

(eg, important motor weakness) do not reach a plateau 
until after 15–20 repetitive treatments. In decompression 
sickness in which the predominant manifestations are 
sensory or pain, symptoms often wax and wane every day. 
Unless improvement after each treatment is documented, 
prolonged hyperbaric treatment is unnecessary.

A few facilities are equipped and staff ed to provide 
saturation therapy, in which the chamber and its 
occupants are maintained at a constant elevated ambient 
pressure (eg, 2·8 bar for US Navy Treatment Table 7).56,122 
Decompression starts after clinical resolution or stability 
is achieved, often in 2–3 days. Saturation treatment is 
usually reserved for cases of severe neurological 
impairment, in which resolution was incomplete during 
initial treatment or deterioration occurred during 
decompression. Data do not suggest that the outcome for 
saturation treatment is better than that with repetitive 
short treatments.

Administration of 100% oxygen at 1 atm is often 
suffi  cient treatment for mild decompression sickness 
after altitude exposure without a preceding dive.123 
Recompression should ideally be off ered to all divers 
with suspected decompression sickness. If recom-
pression facilities are remote and the patient has mild 

Figure 4: Recompression chamber
(A) Multiplace recompression chamber. The chamber can typically be compressed to 6 bar with air. Treatment gas 
(oxygen, oxygen and nitrogen, or oxygen and helium mixes) is given to the patient via a head tent, tightly fi tting 
mask or, for critically ill patients, through endotracheal tube. Photo from SJM. (B) Critical care in a multiplace 
chamber. A fl uidic or pneumatic ventilator is shown at the left. The infusion pump is contained within a plastic 
cover, in which 100% nitrogen is used to decrease the fi re risk in the event of an electrical problem. The monitor 
screen is outside the chamber and can be seen through the viewing port. Photo from Duke University Medical 
Center, with permission.

Figure 5: US Navy Treatment Table 6
From US Navy Diving Manual.56 fsw=feet sea water.
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decompression illness (defi ned as static or remitting 
limb pain, constitutional symptoms, rash, or non-
dermatomal sensory changes that remain stable for 24 h 
with a normal neurological assessment), the outcome is 
unlikely to be worse without recompression.111 In a 
remote location, the risk-benefi t ratio of a hazardous 
evacuation might not be favourable compared with 
delayed recompression or even no recompression.

Decompression sickness during decompression from a 
saturation dive (commercial or military) is usually treated 
with a small recompression to the pressure at which 
symptoms are relieved and by administration of oxygen-
enriched breathing gas (oxygen partial pressure 
1·5–2·8 bar).56

Although recompression is the primary treatment, 
especially for serious decompression illness, other aspects 
of care for seriously ill patients should not be neglected—
eg, management of airway compromise, coma, haemo-
dynamic instability, temperature control, metabolic 
instability, bladder dysfunction, pain, the risks of 
immobility, and long-term disability. In patients with leg 
immobility, prophylaxis is recommended because of the 
substantial risk of venous thromboembolism.106

Asymptomatic diving routinely causes slight 
haemoconcentration suggesting dehydration.124 In 
animals, dehydration can increase the seriousness of 
decompression sickness,125 and in man, adequate 
hydration decreases bubble formation after decom-
pression.70 Severe decompression sickness can cause 
substantial haemoconcentration and haemodynamic 
instability, presumably by widespread endothelial 
damage or infl ammation.10,126 Such fi ndings encourage 
the routine use of intravenous rehydration with non-
glucose isotonic crystalloid fl uids. Fluid overload is best 
avoided because it can contribute to cerebral, spinal cord, 
or pulmonary oedema.

Specifi c drugs have been used as adjuncts to 
recompression. In a randomised trial, the non-steroidal 
anti-infl ammatory drug tenoxicam decreased the number 

of recompressions needed to achieve symptom resolution 
or recovery plateau but did not change fi nal outcome.101 
The prevalence of use of non-steroidal anti-infl ammatory 
drugs in this context is unknown. Aspirin has previously 
been advocated for its antiplatelet eff ects, but it has 
not been formally studied in this context and is 
not recommended.106

Interest in intravenous lidocaine for treatment of 
neurological decompression illness arose out of this drug’s 
apparent effi  cacy in vivo and anecdotal eff ectiveness in 
divers.127 Neuroprotection has been reported in patients 
undergoing cardiac surgery,128 but there are no studies in 
divers, and results of trials in cardiac surgery did not show 
repeat of initial success.129,130 Lidocaine is usually reserved 
for serious neurological cases with features typical of 
arterial gas embolism. High-dose steroids worsen outcome 
in animals131 and are not recommended in people.106

A promising prospect is intravenous perfl uorocarbon 
emulsions132 because both oxygen and inert gases are very 
soluble in these compounds. Perfl uorocarbon emulsions 
probably work by enhancement of tissue oxygenation and 
inert gas transport from tissue to lungs.133 Tissue bubbles 
shrank more rapidly with infusion of perfl uorocarbon 
emulsions and oxygen breathing than with oxygen 
breathing alone in a mouse model of decompression 
sickness.134 Moreover, in a pig model of this disease, 
morbidity and mortality were greatly reduced with 
infusion of perfl uorocarbon emulsions at sea level.135 
Perfl uorocarbon emulsions and hyperbaric oxygen have 
not been studied but hypothetically the combination could 
increase risk of oxygen-related toxic eff ects. The availability 
of a perfl uorocarbon emulsion that is suitable for use in 
man is awaited before trials can be done.

Outcome
When oxygen treatment tables are used with an initial 
treatment pressure of 2·8 bar and the delay to treatment is 
not excessive, symptoms are resolved with a high degree 
of success.105,108,136,137 67% of 63 divers with spinal cord 
decompression sickness had complete resolution at 
1 month after treatment. Of 30 patients in the same series 
with motor weakness, cerebral involvement, or 
cochleovestibular manifestations, only eight (27%) had 
severe disability 1 month after treatment.94 In a study of 
268 patients, including both amateur and professional 
divers, 230 (86%) had complete resolution or minor 
symptoms at discharge.93 In a review of 1763 cases of 
decompression sickness, including several cases with long 
periods to treatment, 80% showed complete recovery.136 Of 
166 patients with decompression sickness resulting from 
experimental dives, with recompression facilities 
immediately at hand, 97% had complete relief after initial 
hyperbaric treatment, and all patients eventually showed 
complete resolution, despite some serious cases of 
neurological and cardiorespiratory disorders.136 Long-term 
outcome data of 69 recreational divers with severe spinal 
cord decompression sickness are listed in the table.

n %

No residual symptoms 34 49·3%

Any residual symptom 35 50·7%

Mild paraesthesias, weakness, or pain 14 20·3%

Some impairment of daily activities 21 30·4%

Diffi  culty walking 11 15·9%

Impaired micturition 13 18·8%

Impaired defecation 15 21·7%

Impaired sexual function 15 21·7%

Data are taken from 51 men, 18 women; mean age 41·2 years (range 19–70 years). 
Divers were assessed by phone interview after a median of 6·1 years (range 
2·3–9·7 years). All but one had received recompression treatment. (Data from the 
Divers Alert Network.)

Table: Long-term outcomes of 69 divers with spinal cord decompression 
sickness, by manifestation
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Guidelines suggest that patients treated for 
decompression illness should be observed within timely 
reach of a chamber for 2 h when symptoms are mild or 
6 h for severe symptoms.56 US Navy guidelines suggest 
that patients should be within 1 h travelling time for 24 h 
after recompression.56 Hospital admission might be 
necessary for patients with severe or residual symptoms. 
Worsening or recurrence suggests a need for immediate 
re-evaluation. Altitude exposure (eg, commercial airplane 
fl ight) after decompression illness can precipitate 
recurrence of symptoms. Generally, patients who were 
recompressed with complete relief should not fl y for at 
least 72 h. Consultation with a trained hyperbaric 
physician is suggested before individuals with residual 
symptoms are allowed to fl y.56

Recompression treatment results in complete 
resolution in most cases, mild residual symptoms in a 
few cases, and rarely serious residual manifestations. No 
follow-up diagnostic studies are necessary for patients 
whose only symptoms are mild (ie, tingling or joint pain) 
and resolved wholly. Patients whose symptoms are 
initially serious or are not fully resolved are usually 
reviewed within a few weeks of discharge. This patient 
assessment allows documentation of progress and 
discussion about future diving. Resumption of diving for 
recreational divers is usually allowed 4 weeks after 
treatment with complete recovery. Military and 
commercial diving organisations have similar guidelines 
for arterial gas embolism or neurological decompression 
sickness, but allow diving after a few days (7 days for the 
US Navy) after mild manifestations such as joint pain. 
Return to fl ying after pain-only decompression sickness 
that has fully resolved is also typically allowed after a few 
days (14 days for the US Air Force). Cautious discussion 
of risk and benefi t is appropriate, especially if 
decompression sickness occurred after a conservative 
depth-time exposure (ie, one well within the maximum 
time allowed by an established decompression table or 
computer). If arterial gas embolism due to pulmonary 
barotrauma is suspected, radiological investigation and 
pulmonary function testing are usually done to exclude 
underlying pulmonary predisposition.

In severe cases, assessment with MRI of the brain and 
spinal cord after treatment can show abnormalities, 
although normal fi ndings do not exclude decompression 
illness.58,139 Positive MRI fi ndings are related to severity 
and outcome.69 Some individuals with initially normal 
MRI examinations develop late changes.139 Similarly, 
nuclear imaging of the brain (eg, PET) is less sensitive 
than is clinical evaluation for detection of abnormalities.140

For divers with vestibular decompression sickness, 
compensation and symptom resolution will occur, and 
physical examination will return to normal, even with 
residual end-organ damage. Although cochlear 
involvement (hearing impairment) remains, it is diffi  cult 
to detect on cursory examination. Therefore, for inner-ear 
decompression sickness, formal audiometry and vestibular 

tests (electronystagmography with rotary chair and caloric 
stimulation) are recommended at 4–6 weeks after injury.

Assessment of patent foramen ovale is often 
recommended for divers with severe or recurrent 
neurological decompression sickness.29,141 For patent 
foramen ovale to be a precipitating factor for 
decompression sickness a substantial amount of venous 
gas emboli should be present, which is unlikely to 
happen in conservative depth-time profi les.21,142 Patent 
foramen ovale or other right-to-left shunts can be 
detected by bubble contrast injection in conjunction with 
transcranial doppler, transoesophageal echocardiography, 
or transthoracic echocardiography. Because intravenous 
injection of bubbles in the presence of inert gas 
supersaturation could facilitate endogenous bubble 
growth, tests of this sort should be done only after 
completion of all hyperbaric treatments. Although 
transoesophageal echocardiography is generally the 
most sensitive test, the relevance of small shunts 
detectable only with this test is not known. Moreover, 
new transthoracic echocardiography techniques seem to 
have similar sensitivity.143 Detection of a patent foramen 
ovale could warrant counselling about future diving, 
aimed at prevention of venous gas emboli.21,142 Some 
divers who wish to return to unrestricted diving opt to 
have the patent foramen ovale repaired with a 
transvenous septal occluder device, but a careful 
discussion of risks and benefi ts is needed before this 
procedure can be recommended.138,144,145 Patent foramen 
ovale is a common anomaly in the general population, 
and many individuals with decompression sickness do 
not have it. Therefore, a causal link between patent 
foramen ovale and an individual case of decompression 
sickness should not be ascribed.

Conclusions
Decompression illness occurs in a small population but is 
an international problem that few physicians are trained 
to recognise or manage. Although its manifestations are 
often mild, the potential for permanent injury exists in 
severe cases, especially if unrecognised or inadequately 
treated. Emergency medical personnel should be aware 
of manifestations of decompression illness in the setting 
of a patient with a history of recent diving or other 
exposure to substantial pressure change, and should 
contact an appropriate consultation service for advice.
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